Joint product numerical range and geometry of reduced density matrices
نویسندگان
چکیده
منابع مشابه
Schur product of matrices and numerical radius (range) preserving maps
Let F (A) be the numerical range or the numerical radius of a square matrix A. Denote by A◦B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F (A ◦ B) = F (φ(A) ◦ φ(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices. 2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
متن کاملGENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملNumerical Range for Random Matrices
We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius √ 2. Since the spectrum of non-hermitian random...
متن کاملProduct of Operators and Numerical Range
We show that a bounded linear operator A ∈ B(H) is a multiple of a unitary operator if and only if AZ and ZA always have the same numerical radius or the same numerical range for all (rank one) Z ∈ B(H). More generally, for any bounded linear operators A,B ∈ B(H), we show that AZ and ZB always have the same numerical radius (resp., the same numerical range) for all (rank one) Z ∈ B(H) if and on...
متن کاملMinkowski product of convex sets and product numerical range
Let K1,K2 be two compact convex sets in C. Their Minkowski product is the set K1K2 = {ab : a ∈ K1, b ∈ K2}. We show that the set K1K2 is star-shaped if K1 is a line segment or a circular disk. Examples for K1 and K2 are given so that K1 and K2 are triangles (including interior) and K1K2 is not star-shaped. This gives a negative answer to a conjecture by Puchala et. al concerning the product num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Physics, Mechanics & Astronomy
سال: 2016
ISSN: 1674-7348,1869-1927
DOI: 10.1007/s11433-016-0404-5